Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Infect Dis Now ; 52(8S): S7-S8, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-20238432

ABSTRACT

Heterologous prime boost vaccination is a primary vaccination with different vaccines, most often from different vaccine platforms. It combines the immunological properties of the different vaccines and thereby induces humoral, cellular and, in some cases, mucosal response. For Covid prevention, it has been used in primary vaccination, due to safety issues and in boosters. We have evaluated some articles reporting on the results of this type of vaccine, and demonstrating its usefulness.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Immunization, Secondary/methods , Vaccination/methods
4.
J Formos Med Assoc ; 121(12): 2438-2445, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2210778

ABSTRACT

BACKGROUND: Whether immunocompromising conditions affect the immunogenicity of COVID-19 booster vaccination remains a concern, which impedes the vaccination campaign in people most vulnerable to COVID-19-associated morbidity and mortality. We aimed to evaluate the effect of immune dysfunction on immunogenicity of homologous and heterologous prime-boost COVID-19 vaccination. METHODS: Between July and August, 2021, 399 participants were randomized to receive ChAdOx1/ChAdOx1 8 weeks apart, ChAdOx1/mRNA-1273 8 weeks apart, ChAdOx1/mRNA-1273 4 weeks apart, and mRNA-1273/mRNA-1273 4 weeks apart. The anti-SARS-CoV-2 spike IgG antibody titers on the day before booster vaccination and 4 weeks after booster vaccination were compared between participants with and without immunocompromising conditions. RESULTS: Among ChAdOx1-primed participants, a trend of lower anti-SARS-CoV-2 spike IgG titers before booster vaccination were found in participants with autoimmune diseases (geometric means, 34.76 vs. 84.25 binding antibody units [BAU]/mL, P = 0.173), compared to those without. Participants receiving immunosuppressants and/or immunomodulators had significant lower anti-SARS-CoV-2 spike IgG titers before booster vaccination than those without (geometric means, 36.39 vs. 83.84 BAU/mL; P = 0.001). Among mRNA-1273-boosted participants, anti-SARS-CoV-2 spike IgG titers 4 weeks after booster vaccination were similar across all the strata. Participants with autoimmune diseases and receiving immunosuppressants and/or immunomodulators, had numerically lower anti-SARS-CoV-2 spike IgG titers 4 weeks after booster vaccination compared to those without (geometric means, 1474.34 vs. 1923.23 and 1590.61 vs. 1918.38 BAU/mL; P > 0.05). CONCLUSION: The immunogenicity of prime vaccination with ChAdOx1 decreased by immune dysfunction, but enhanced after receiving boost vaccination with mRNA-1273. Our study results support the efficacy of mRNA-1273 booster dose among immunocompromised hosts.


Subject(s)
Autoimmune Diseases , COVID-19 , Humans , Immunization, Secondary/methods , 2019-nCoV Vaccine mRNA-1273 , COVID-19/prevention & control , Taiwan , Antibodies, Viral , Immunocompromised Host , Vaccination , Immunoglobulin G , Adjuvants, Immunologic , Immunosuppressive Agents
8.
Emerg Microbes Infect ; 11(1): 1950-1958, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1937611

ABSTRACT

Using a three-prefecture, two-variant COVID-19 outbreak in Henan province in January 2022, we evaluated the associations of primary and booster immunization with China-produced COVID-19 vaccines and COVID-19 pneumonia and SARS-CoV-2 viral load among persons infected by Delta or Omicron variant. We obtained demographic, clinical, vaccination, and multiple Ct values of infections ≥3 years of age. Vaccination status was either primary series ≥180 days prior to infection; primary series <180 days prior to infection, or booster dose recipient. We used logistic regression to determine odds ratios (OR) of Delta and Omicron COVID-19 pneumonia by vaccination status. We analysed minimum Ct values by vaccination status, age, and variant. Of 826 eligible cases, 405 were Delta and 421 were Omicron cases; 48.9% of Delta and 19.0% of Omicron cases had COVID-19 pneumonia. Compared with full primary vaccination ≥180 days before infection, the aOR of pneumonia was 0.48 among those completing primary vaccination <180 days and 0.18 among booster recipients among these Delta infections. Among Omicron infections, the corresponding aOR was 0.34 among those completing primary vaccination <180 days. There were too few (ten) Omicron cases among booster dose recipients to calculate a reliable OR. There were no differences in minimum Ct values by vaccination status among the 356 Delta cases or 70 Omicron cases. COVID-19 pneumonia was less common among Omicron cases than Delta cases. Full primary vaccination reduced pneumonia effectively for 6 months; boosting six months after primary vaccination resulted in further reduction. We recommend accelerating the pace of booster dose administration.


Subject(s)
COVID-19 , Pneumonia , COVID-19/prevention & control , COVID-19 Vaccines , China/epidemiology , Humans , Immunization, Secondary/methods , SARS-CoV-2 , Viral Load
10.
Front Immunol ; 13: 841868, 2022.
Article in English | MEDLINE | ID: covidwho-1785344

ABSTRACT

The Bacillus Calmette-Guérin (BCG) vaccine, which is widely used to protect children against tuberculosis, can also improve immune response against viral infections. This unicentric, randomized-controlled clinical trial assessed the efficacy and safety of revaccination with BCG Moscow in reducing the positivity and symptoms of COVID-19 in health care workers (HCWs) during the COVID-19 pandemic. HCWs who had negative COVID-19 IgM and IgG and who dedicated at least eight hours per week in facilities that attended to individuals suspected of having COVID-19 were included in the study and were followed for 7, 15, 30, 60, and 180 days by telemedicine. The HCWs were randomly allocated to a revaccinated with BCG group, which received the BCG vaccine, or an unvaccinated group. Revaccination with BCG Moscow was found to be safe, and its efficacy ranged from 30.0% (95.0%CI -78.0 to 72.0%) to 31.0% (95.0%CI -74.0 to 74.0%). Mycobacterium bovis BCG Moscow did not induce NK cell activation at 15-20 days post-revaccination. As hypothesized, revaccination with BCG Moscow was associated with a lower incidence of COVID-19 positivity, though the results did not reach statistical significance. Further studies should be carried out to assess whether revaccination with BCG is able to protect HCWs against COVID-19. The protocol of this clinical trial was registered on August 5th, 2020, at REBEC (Registro Brasileiro de Ensaios Clínicos, RBR-4kjqtg - ensaiosclinicos.gov.br/rg/RBR-4kjqtg/1) and the WHO (# U1111-1256-3892). The clinical trial protocol was approved by the Comissão Nacional de ética de pesquisa- CONEP (CAAE 31783720.0.0000.5078).


Subject(s)
COVID-19 , Mycobacterium bovis , BCG Vaccine , COVID-19/prevention & control , Child , Health Personnel , Humans , Immunization, Secondary/methods , Moscow , Pandemics/prevention & control
13.
Cell Rep ; 38(9): 110429, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1734242

ABSTRACT

Continuous emergence of SARS-CoV-2 variants of concern (VOCs) is fueling the COVID-19 pandemic. Omicron (B.1.1.529) rapidly spread worldwide. The large number of mutations in its Spike raise concerns about a major antigenic drift that could significantly decrease vaccine efficacy and infection-induced immunity. A long interval between BNT162b2 mRNA doses elicits antibodies that efficiently recognize Spikes from different VOCs. Here, we evaluate the recognition of Omicron Spike by plasma from a cohort of SARS-CoV-2 naive and previously infected individuals who received their BNT162b2 mRNA vaccine 16 weeks apart. Omicron Spike is recognized less efficiently than D614G, Alpha, Beta, Gamma, and Delta Spikes. We compare with plasma activity from participants receiving a short (4 weeks) interval regimen. Plasma from individuals of the long-interval cohort recognize and neutralize better the Omicron Spike compared with those who received a short interval. Whether this difference confers any clinical benefit against Omicron remains unknown.


Subject(s)
Antibodies, Neutralizing/blood , BNT162 Vaccine/administration & dosage , Immunization Schedule , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/analysis , Antibodies, Neutralizing/immunology , Antibodies, Viral/analysis , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , Cohort Studies , Female , HEK293 Cells , Humans , Immunization, Secondary/methods , Male , Middle Aged , Quebec , SARS-CoV-2/pathogenicity , Time Factors , Vaccination/methods , Vaccine Potency , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Young Adult , mRNA Vaccines/administration & dosage , mRNA Vaccines/immunology
14.
Nat Commun ; 13(1): 1237, 2022 03 04.
Article in English | MEDLINE | ID: covidwho-1730289

ABSTRACT

The BNT162b2 COVID-19 vaccine has been shown to reduce viral load of breakthrough infections (BTIs), an important factor affecting infectiousness. This viral-load protective effect has been waning with time post the second vaccine and later restored with a booster shot. It is currently unclear though for how long this regained effectiveness lasts. Analyzing Ct values of SARS-CoV-2 qRT-PCR tests of over 22,000 infections during a Delta-variant-dominant period in Israel, we find that this viral-load reduction effectiveness significantly declines within months post the booster dose. Adjusting for age, sex and calendric date, Ct values of RdRp gene initially increases by 2.7 [CI: 2.3-3.0] relative to unvaccinated in the first month post the booster dose, yet then decays to a difference of 1.3 [CI: 0.7-1.9] in the second month and becomes small and insignificant in the third to fourth months. The rate and magnitude of this post-booster decline in viral-load reduction effectiveness mirror those observed post the second vaccine. These results suggest rapid waning of the booster's effectiveness in reducing infectiousness, possibly affecting community-level spread of the virus.


Subject(s)
BNT162 Vaccine/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Immunization, Secondary/methods , SARS-CoV-2/immunology , Viral Load/immunology , Adult , Algorithms , BNT162 Vaccine/administration & dosage , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Female , Humans , Immunization, Secondary/statistics & numerical data , Immunogenicity, Vaccine/immunology , Linear Models , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Time Factors , Treatment Outcome , Vaccination/methods , Vaccination/statistics & numerical data
15.
Nat Commun ; 13(1): 864, 2022 02 14.
Article in English | MEDLINE | ID: covidwho-1684028

ABSTRACT

Patients with hematological malignancies have impaired immune response after two doses of BNT162b2 (Pfizer/BioNTech) vaccine against SARS-CoV-2. Here, in this observational study (registration number HDH F20210324145532), we measure SARS-CoV-2 anti-Spike antibodies, neutralizing antibodies and T-cell responses after immune stimulation with a third dose (D3) of the same vaccine in patients with chronic lymphocytic leukemia (n = 13), B cell non-Hodgkin lymphoma (n = 14), and multiple myeloma (n = 16)). No unexpected novel side effects are reported. Among 25 patients with positive anti-S titers before D3, 23 (92%) patients increase their anti-S and neutralizing antibody titer after D3. All 18 (42%) initially seronegative patients remain negative. D3 increases the median IFN-γ secretion in the whole cohort and induces IFN-γ secretion in a fraction of seronegative patients. Our data thus support the use of a third vaccine dose amongst patients with lymphoid malignancies, even though some of them will still have vaccine failure.


Subject(s)
BNT162 Vaccine/immunology , Hematologic Neoplasms , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunization, Secondary/methods , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Female , Humans , Male , Middle Aged , Multiple Myeloma , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology
16.
Front Immunol ; 13: 811020, 2022.
Article in English | MEDLINE | ID: covidwho-1674341

ABSTRACT

BACKGROUND: Heterologous vaccinations against SARS-CoV-2 with ChAdOx1 nCoV-19 and a second dose of an mRNA-based vaccine have been shown to be more immunogenic than homologous ChAdOx1 nCoV-19. In the current study, we examined the kinetics of the antibody response to the second dose of three different vaccination regimens (homologous ChAdOx1 nCoV-19 vs. ChAdOx1 nCoV-19 + BNT162b2 or mRNA-1273) against SARS-CoV-2 in a longitudinal manner; whether there are differences in latency or amplitude of the early response and which markers are most suitable to detect these responses. METHODS: We performed assays for anti-S1 IgG and IgA, anti-NCP IgG and a surrogate neutralization assay on serum samples collected from 57 participants on the day of the second vaccination as well as the following seven days. RESULTS: All examined vaccination regimens induced detectable antibody responses within the examined time frame. Both heterologous regimens induced responses earlier and with a higher amplitude than homologous ChAdOx1 nCoV-19. Between the heterologous regimens, amplitudes were somewhat higher for ChAdOx1 nCoV-19 + mRNA-1273. There was no difference in latency between the IgG and IgA responses. Increases in the surrogate neutralization assay were the first changes to be detectable for all regimens and the only significant change seen for homologous ChAdOx1 nCoV-19. DISCUSSION: Both examined heterologous vaccination regimens are superior in immunogenicity, including the latency of the response, to homologous ChAdOx1 nCoV-19. While the IgA response has a shorter latency than the IgG response after the first dose, no such difference was found after the second dose, implying that both responses are driven by separate plasma cell populations. Early and steep increases in surrogate neutralization levels suggest that this might be a more sensitive marker for antibody responses after vaccination against SARS-CoV-2 than absolute levels of anti-S1 IgG.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Neutralizing/blood , BNT162 Vaccine/immunology , ChAdOx1 nCoV-19/immunology , Immunization, Secondary/methods , SARS-CoV-2/immunology , Adult , Age Factors , Antibodies, Viral/blood , Antibody Formation/immunology , COVID-19/immunology , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Male , Middle Aged , Sex Factors , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Vaccination , Young Adult
17.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: covidwho-1671753

ABSTRACT

Due to the enormous economic, health, and social costs of the COVID-19 pandemic, there are high expected social returns to investing in parallel in multiple approaches to accelerating vaccination. We argue there are high expected social returns to investigating the scope for lowering the dosage of some COVID-19 vaccines. While existing evidence is not dispositive, available clinical data on the immunogenicity of lower doses combined with evidence of a high correlation between neutralizing antibody response and vaccine efficacy suggests that half or even quarter doses of some vaccines could generate high levels of protection, particularly against severe disease and death, while potentially expanding supply by 450 million to 1.55 billion doses per month, based on supply projections for 2021. An epidemiological model suggests that, even if fractional doses are less effective than standard doses, vaccinating more people faster could substantially reduce total infections and deaths. The costs of further testing alternative doses are much lower than the expected public health and economic benefits. However, commercial incentives to generate evidence on fractional dosing are weak, suggesting that testing may not occur without public investment. Governments could support either experimental or observational evaluations of fractional dosing, for either primary or booster shots. Discussions with researchers and government officials in multiple countries where vaccines are scarce suggests strong interest in these approaches.


Subject(s)
COVID-19 Vaccines/supply & distribution , COVID-19/prevention & control , Immunization, Secondary/methods , Models, Statistical , Vaccination/methods , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/economics , Developed Countries , Developing Countries , Drug Administration Schedule , Humans , Immunization, Secondary/economics , Off-Label Use , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Survival Analysis , Vaccination/economics
19.
Cell Rep Med ; 3(2): 100529, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1649941

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant emerged in November 2021 and consists of several mutations within the spike. We use serum from mRNA-vaccinated individuals to measure neutralization activity against omicron in a live-virus assay. At 2-4 weeks after a primary series of vaccinations, we observe a 30-fold reduction in neutralizing activity against omicron. Six months after the initial two-vaccine doses, sera from naive vaccinated subjects show no neutralizing activity against omicron. In contrast, COVID-19-recovered individuals 6 months after receiving the primary series of vaccinations show a 22-fold reduction, with the majority of the subjects retaining neutralizing antibody responses. In naive individuals following a booster shot (third dose), we observe a 14-fold reduction in neutralizing activity against omicron, and over 90% of subjects show neutralizing activity. These findings show that a third dose is required to provide robust neutralizing antibody responses against the omicron variant.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccination/methods , Adult , Aged , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Cohort Studies , Female , Humans , Immunization, Secondary/methods , Male , Middle Aged , Mutation , Neutralization Tests , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , Young Adult
20.
Nat Microbiol ; 7(2): 195-199, 2022 02.
Article in English | MEDLINE | ID: covidwho-1616988

ABSTRACT

Here we compared SARS-CoV-2-specific antibody and T-cell responses between older adults (>80 years old, n = 51) and a younger control group (20-53 years old, n = 46) after receiving two doses of BNT162b2. We found that responses in older adults were generally lower, and we identified 10% low-/non-responders. After receiving a third vaccination with BNT162b2, 4 out of 5 low-/non-responders showed antibody and T-cell responses similar to those of responders after two vaccinations.


Subject(s)
Antibodies, Viral/blood , BNT162 Vaccine/immunology , COVID-19/prevention & control , Immunity, Cellular , Immunity, Humoral , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Adult , Age Factors , Aged, 80 and over , Antibodies, Neutralizing/blood , BNT162 Vaccine/administration & dosage , COVID-19/immunology , Humans , Immunization, Secondary/methods , Immunization, Secondary/statistics & numerical data , Immunoglobulin G/blood , Middle Aged , Neutralization Tests , T-Lymphocytes/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL